@@ -111,10 +111,18 @@ These can be constructed by passing ``pretrained=True``:
111
111
efficientnet_b7 = models.efficientnet_b7(pretrained = True )
112
112
regnet_y_400mf = models.regnet_y_400mf(pretrained = True )
113
113
regnet_y_800mf = models.regnet_y_800mf(pretrained = True )
114
+ regnet_y_1_6gf = models.regnet_y_1_6gf(pretrained = True )
115
+ regnet_y_3_2gf = models.regnet_y_3_2gf(pretrained = True )
114
116
regnet_y_8gf = models.regnet_y_8gf(pretrained = True )
117
+ regnet_y_16gf = models.regnet_y_16gf(pretrained = True )
118
+ regnet_y_32gf = models.regnet_y_32gf(pretrained = True )
115
119
regnet_x_400mf = models.regnet_x_400mf(pretrained = True )
116
120
regnet_x_800mf = models.regnet_x_800mf(pretrained = True )
121
+ regnet_x_1_6gf = models.regnet_x_1_6gf(pretrained = True )
122
+ regnet_x_3_2gf = models.regnet_x_3_2gf(pretrained = True )
117
123
regnet_x_8gf = models.regnet_x_8gf(pretrained = True )
124
+ regnet_x_16gf = models.regnet_x_16gf(pretrainedTrue)
125
+ regnet_x_32gf = models.regnet_x_32gf(pretrained = True )
118
126
119
127
Instancing a pre-trained model will download its weights to a cache directory.
120
128
This directory can be set using the `TORCH_MODEL_ZOO ` environment variable. See
@@ -209,12 +217,20 @@ EfficientNet-B4 83.384 96.594
209
217
EfficientNet-B5 83.444 96.628
210
218
EfficientNet-B6 84.008 96.916
211
219
EfficientNet-B7 84.122 96.908
212
- regnet_x_400mf 72.834 90.950
213
- regnet_x_800mf 75.190 92.418
214
- regnet_x_8gf 79.324 94.694
215
- regnet_y_400mf 74.024 91.680
220
+ regnet_x_400mf 72.834 90.950
221
+ regnet_x_800mf 75.212 92.348
222
+ regnet_x_1_6gf 77.040 93.440
223
+ regnet_x_3_2gf 78.364 93.992
224
+ regnet_x_8gf 79.344 94.686
225
+ regnet_x_16gf 80.058 94.944
226
+ regnet_x_32gf 80.622 95.248
227
+ regnet_y_400mf 74.046 91.716
216
228
regnet_y_800mf 76.420 93.136
217
- regnet_y_8gf 79.966 95.100
229
+ regnet_y_1_6gf 77.950 93.966
230
+ regnet_y_3_2gf 78.948 94.576
231
+ regnet_y_8gf 80.032 95.048
232
+ regnet_y_16gf 80.424 95.240
233
+ regnet_y_32gf 80.878 95.340
218
234
================================ ============= =============
219
235
220
236
0 commit comments