|
| 1 | +import warnings |
| 2 | +from functools import partial |
| 3 | +from typing import Any, List, Optional, Type, Union |
| 4 | + |
| 5 | +from ....models.quantization.resnet import ( |
| 6 | + QuantizableBasicBlock, |
| 7 | + QuantizableBottleneck, |
| 8 | + QuantizableResNet, |
| 9 | + _replace_relu, |
| 10 | + quantize_model, |
| 11 | +) |
| 12 | +from ...transforms.presets import ImageNetEval |
| 13 | +from .._api import Weights, WeightEntry |
| 14 | +from .._meta import _IMAGENET_CATEGORIES |
| 15 | +from ..resnet import ResNet50Weights |
| 16 | + |
| 17 | + |
| 18 | +__all__ = ["QuantizableResNet", "QuantizedResNet50Weights", "resnet50"] |
| 19 | + |
| 20 | + |
| 21 | +def _resnet( |
| 22 | + block: Type[Union[QuantizableBasicBlock, QuantizableBottleneck]], |
| 23 | + layers: List[int], |
| 24 | + weights: Optional[Weights], |
| 25 | + progress: bool, |
| 26 | + quantize: bool, |
| 27 | + **kwargs: Any, |
| 28 | +) -> QuantizableResNet: |
| 29 | + if weights is not None: |
| 30 | + kwargs["num_classes"] = len(weights.meta["categories"]) |
| 31 | + if "backend" in weights.meta: |
| 32 | + kwargs["backend"] = weights.meta["backend"] |
| 33 | + backend = kwargs.pop("backend", "fbgemm") |
| 34 | + |
| 35 | + model = QuantizableResNet(block, layers, **kwargs) |
| 36 | + _replace_relu(model) |
| 37 | + if quantize: |
| 38 | + quantize_model(model, backend) |
| 39 | + |
| 40 | + if weights is not None: |
| 41 | + model.load_state_dict(weights.state_dict(progress=progress)) |
| 42 | + |
| 43 | + return model |
| 44 | + |
| 45 | + |
| 46 | +_common_meta = { |
| 47 | + "size": (224, 224), |
| 48 | + "categories": _IMAGENET_CATEGORIES, |
| 49 | + "backend": "fbgemm", |
| 50 | +} |
| 51 | + |
| 52 | + |
| 53 | +class QuantizedResNet50Weights(Weights): |
| 54 | + ImageNet1K_FBGEMM_RefV1 = WeightEntry( |
| 55 | + url="https://download.pytorch.org/models/quantized/resnet50_fbgemm_bf931d71.pth", |
| 56 | + transforms=partial(ImageNetEval, crop_size=224), |
| 57 | + meta={ |
| 58 | + **_common_meta, |
| 59 | + "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#quantized", |
| 60 | + "acc@1": 75.920, |
| 61 | + "acc@5": 92.814, |
| 62 | + }, |
| 63 | + ) |
| 64 | + |
| 65 | + |
| 66 | +def resnet50( |
| 67 | + weights: Optional[Union[QuantizedResNet50Weights, ResNet50Weights]] = None, |
| 68 | + progress: bool = True, |
| 69 | + quantize: bool = False, |
| 70 | + **kwargs: Any, |
| 71 | +) -> QuantizableResNet: |
| 72 | + if "pretrained" in kwargs: |
| 73 | + warnings.warn("The argument pretrained is deprecated, please use weights instead.") |
| 74 | + if kwargs.pop("pretrained"): |
| 75 | + weights = QuantizedResNet50Weights.ImageNet1K_FBGEMM_RefV1 if quantize else ResNet50Weights.ImageNet1K_RefV1 |
| 76 | + else: |
| 77 | + weights = None |
| 78 | + |
| 79 | + if quantize: |
| 80 | + weights = QuantizedResNet50Weights.verify(weights) |
| 81 | + else: |
| 82 | + weights = ResNet50Weights.verify(weights) |
| 83 | + |
| 84 | + return _resnet(QuantizableBottleneck, [3, 4, 6, 3], weights, progress, quantize, **kwargs) |
0 commit comments