diff --git a/docs/source/datasets.rst b/docs/source/datasets.rst
index 08c841399c2..036a2ac9a12 100644
--- a/docs/source/datasets.rst
+++ b/docs/source/datasets.rst
@@ -46,6 +46,7 @@ You can also create your own datasets using the provided :ref:`base classes `_ Dataset.
+
+ .. warning::
+
+ This class needs `scipy `_ to load target files from `.mat` format.
+
+ Oxford 102 Flower is an image classification dataset consisting of 102 flower categories. The
+ flowers were chosen to be flowers commonly occurring in the United Kingdom. Each class consists of
+ between 40 and 258 images.
+
+ The images have large scale, pose and light variations. In addition, there are categories that
+ have large variations within the category, and several very similar categories.
+
+ Args:
+ root (string): Root directory of the dataset.
+ split (string, optional): The dataset split, supports ``"train"`` (default), ``"val"``, or ``"test"``.
+ download (bool, optional): If true, downloads the dataset from the internet and
+ puts it in root directory. If dataset is already downloaded, it is not
+ downloaded again.
+ transform (callable, optional): A function/transform that takes in an PIL image and returns a
+ transformed version. E.g, ``transforms.RandomCrop``.
+ target_transform (callable, optional): A function/transform that takes in the target and transforms it.
+ """
+
+ _download_url_prefix = "https://www.robots.ox.ac.uk/~vgg/data/flowers/102/"
+ _file_dict = { # filename, md5
+ "image": ("102flowers.tgz", "52808999861908f626f3c1f4e79d11fa"),
+ "label": ("imagelabels.mat", "e0620be6f572b9609742df49c70aed4d"),
+ "setid": ("setid.mat", "a5357ecc9cb78c4bef273ce3793fc85c"),
+ }
+ _splits_map = {"train": "trnid", "val": "valid", "test": "tstid"}
+
+ def __init__(
+ self,
+ root: str,
+ split: str = "train",
+ download: bool = True,
+ transform: Optional[Callable] = None,
+ target_transform: Optional[Callable] = None,
+ ) -> None:
+ super().__init__(root, transform=transform, target_transform=target_transform)
+ self._split = verify_str_arg(split, "split", ("train", "val", "test"))
+ self._base_folder = Path(self.root) / "flowers-102"
+ self._images_folder = self._base_folder / "jpg"
+
+ if download:
+ self.download()
+
+ if not self._check_integrity():
+ raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
+
+ from scipy.io import loadmat
+
+ set_ids = loadmat(self._base_folder / self._file_dict["setid"][0], squeeze_me=True)
+ image_ids = set_ids[self._splits_map[self._split]].tolist()
+
+ labels = loadmat(self._base_folder / self._file_dict["label"][0], squeeze_me=True)
+ image_id_to_label = dict(enumerate(labels["labels"].tolist(), 1))
+
+ self._labels = []
+ self._image_files = []
+ for image_id in image_ids:
+ self._labels.append(image_id_to_label[image_id])
+ self._image_files.append(self._images_folder / f"image_{image_id:05d}.jpg")
+
+ def __len__(self) -> int:
+ return len(self._image_files)
+
+ def __getitem__(self, idx) -> Tuple[Any, Any]:
+ image_file, label = self._image_files[idx], self._labels[idx]
+ image = PIL.Image.open(image_file).convert("RGB")
+
+ if self.transform:
+ image = self.transform(image)
+
+ if self.target_transform:
+ label = self.target_transform(label)
+
+ return image, label
+
+ def extra_repr(self) -> str:
+ return f"split={self._split}"
+
+ def _check_integrity(self):
+ if not (self._images_folder.exists() and self._images_folder.is_dir()):
+ return False
+
+ for id in ["label", "setid"]:
+ filename, md5 = self._file_dict[id]
+ if not check_integrity(str(self._base_folder / filename), md5):
+ return False
+ return True
+
+ def download(self):
+ if self._check_integrity():
+ return
+ download_and_extract_archive(
+ f"{self._download_url_prefix}{self._file_dict['image'][0]}",
+ str(self._base_folder),
+ md5=self._file_dict["image"][1],
+ )
+ for id in ["label", "setid"]:
+ filename, md5 = self._file_dict[id]
+ download_url(self._download_url_prefix + filename, str(self._base_folder), md5=md5)