
A Study on Switch Block Patterns for
Tileable FPGA Routing Architectures
Xifan Tang, Edouard Giacomin, Aurélien Alacchi and Pierre-Emmanuel Gaillardon

University of Utah
Email: xifan.tang@utah.edu

Abstract—Following the rapid growth of Field Programmable
Gate Arrays (FPGAs) sizes, the regularity of architectures has
become a critical feature, leading to the development of million-
of-LUT devices. While the routing architecture plays a dom-
inant role in the area, delay and power of modern FPGAs,
most of previously published works focus on improving the
routability and performance of FPGAs while very few studied
tileable (highly-regular) routing architectures. In this paper, we
provide a detailed analysis between tileable and popular non-
tileable FPGAs considering modern routing architectures. First,
we upgrade VPR to generate tileable routing architecture, which
can support different switch block patterns for (1) the routing
tracks that start/end in a tile and (2) the routing tracks that
pass through a tile. Then, we evaluate the performance of mixed
switch blocks patterns in the context of a Stratix IV-like FPGA
architecture, by considering the most representative patterns,
i.e., Subset, Universal and Wilton. Experimental results show
that averaged over the MCNC and VTR benchmarks, when
compared to the well-optimized non-tileable architectures, the
tileable architectures can improve the minimum routable channel
width by 13% and area-delay product by 2%. In particular, our
results showed that in the context of tileable FPGA, a mix of
Universal and Wilton switch block patterns lead to the best trade-
off in area, delay and routability, while Wilton switch block was
the best choice in non-tileable FPGAs.

I. INTRODUCTION

The routing architecture implementation has a dominant
impact on the area, delay and power of modern Field Pro-
grammable Gate Arrays (FPGAs) [1], [2]. As FPGA sizes
grew rapidly, highly-regular architectures, especially tile-based
FPGAs, have become mainstream in commercial products [3],
[4]. Tileable architectures remarkably simplify the development
of FPGA layouts, as the full fabric can be built with a small
number of repeatable tiles. For full-custom designed FPGAs,
manual layouts are only required for a small number of tiles,
reducing engineering efforts as well as development cost [2]–[9].
For semi-custom designed fabrics [10]–[14], the runtime and
memory usage of backend flows can be potentially reduced by
exploiting the hierarchical P&R provided by cutting-edge tools.
Nevertheless, very limited published works studied the specifics
of tileable FPGAs, in particular the routing architecture [2], [5]–
[7]. Previous works mainly focus on improving the routability
and performance of FPGAs using VPR, which produces non-
tileable unidirectional fabrics [15]–[23]. Moreover, switch block
patterns have a crucial impact on the routing architecture, while
previous works assume simple conditions, e.g., length-1 wires
and bidirectional routing tracks, which are rarely used in modern
FPGAs [19]–[22]. Note that major works only considered
uniform switch block patterns even for various lengths of
routing tracks [19]–[21], while very limited work has been
done for mixed switch block patterns [15], [22].

In this paper, we provide a detailed analysis between fully
tileable and non-tileable FPGAs considering modern routing
architectures. Our contributions are as follows:
(1) We upgrade VPR with a tileable Routing Resource Graph
(RRG) generator, which can generate regular routing archi-
tecture for both homogeneous and heterogeneous FPGAs.

Experimental results show that compared to VPR, our RRG
generator can reduce the number of unique tiles by 8.8× and
5.5× for homogeneous and heterogeneous FPGAs respectively,
even considering 128× 128 array size.
(2) More than tileable FPGA, our RRG generator also supports
different switch block patterns for (a) the routing tracks that
start/end in a tile and (b) the routing tracks that pass a tile.
We evaluate the performance of mixed switch blocks patterns
in the context of a Stratix IV-like FPGA architecture, by
considering the most representative patterns, i.e., Subset [20],
Universal [19], Wilton [21] and Imran [22]. Experimental results
show that averaged over the MCNC and VTR benchmarks,
when compared to the well-optimized non-tileable architectures,
the tileable architectures can improve the minimum routable
channel width by 13% and area-delay product by 2%. In
particular, our results showed that in the context of tileable
FPGA, a mix of Universal and Wilton switch block patterns
leads to the best trade-off in area, delay and routability, while
Wilton switch block was the best choice in non-tileable FPGAs.

The rest of this paper is organized as follows. Section II
reviews the modern FPGA architectures and related works.
Section III introduces the tileable routing architecture generator.
Section IV presents experimental results. Section V concludes
this paper.

II. BACKGROUND

This section will first introduce the tile-based modern FPGA
architectures and then briefly review previous works on routing
architectures.

A. Tile-based FPGA Architecture

Modern FPGA architectures are commonly organized in
a high-granularity island style, which consists of an array of
repeatable tiles. As shown in Fig. 1, each tile consists of a
Configurable Logic Block (CLB), two Connection Blocks (CBs)
which connect CLB pins to X-direction and Y-direction routing

Routing TrackIO

C
onnection
 B

lock

Connection 
Block

Tile

Switch
Block

Configurable 
Logic 
Block

...

...

...

...

...

...

Transceivers

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Transceivers

Fig. 1: Tile-based FPGA architecture: tiles in the same color are
repeatable.



Starting routing tracks Ending routing tracks Passing routing tracks 

(a)

(b)

Fig. 2: An illustrative example of subset switch block pattern
interconnecting uni-directional Length-2 wires in : (a) non-tileable
(untileable) architecture and (b) tileable architecture.

tracks respectively, and a Switch Block (SB) that interconnects
routing tracks. An FPGA is considered tileable when all the
tiles except the periphery tiles share exactly the same internal
structures and layouts. Fig. 1 shows an example of tileable
FPGAs, where the replicated tiles are highlighted with the
same color. The main advantage of tileable architecture is that
only one tile will be laid out and can be assembled to create
any sizes of FPGAs. However, the majority of previous works
are based on the unidirectional FPGAs modeled by VPR [23],
which is not tileable, while very limited works studied tileable
FPGA [2], [6], [7]. For instance, I. Kuon et al. proposed a
tileable FPGA generator, GILES [2], which can generate any
FPGA fabric using 9 unique tiles. Nevertheless, none of these
works provided a detailed performance analysis comparing
tileable and non-tileable FPGAs.

B. Previous works on Switch Block Patterns

Switch blocks have a crucial impact on most critical paths
in FPGAs, and may contribute up to 50% of the delays [1].
Through twenty-year of intensive research, there are three
most popular switch block patterns standing out for best area-
delay trade-off: Subset [20], Universal [19], Wilton [21]. Fig.
2(a) depicts an example of subset switch block pattern in the
context of uni-directional routing architecture using length-
2 wire segments. Note that when length-X (X > 1) wire
segments are used in a switch block, there are a larger number
of routing tracks that just pass through than those that start/end.
Most previous works applied uniform switch block patterns to
the starting, ending and passing tracks [15]–[23], while very
limited works tried separated patterns [15], [22], [23]. For
example, the popular architecture exploration tool VPR assigns
passing tracks to starting tracks following a round-robin scheme
[23]. This indeed balances the multiplexer sizes of SBs, but
it does make the architecture not tileable. Also, it remains an
open question if the round-robin scheme is superior to other
interconnection patterns. Moreover, early studies assume simple

conditions in routing architectures, e.g., length-1 wires and
bidirectional routing tracks, which are rarely used in modern
FPGAs [19]–[22]. Only a few recent works performed practical
analysis considering multi-length wires and uni-directional
routing [15], [23]. Considering these facts, the switch block
patterns do require a revisit in the context of modern tileable
FPGA architectures.

III. TILEABLE ROUTING RESOURCE GRAPH GENERATION

In VPR, FPGA routing architectures are modeled by the
Routing Resource Graph (RRG), where each node represents
routing tracks and CLB inputs/outputs, while edges denote
interconnections. In this section, we propose a tileable RRG
generator, which (1) can automatically arrange the distribution
of wire segments for routing channels in a tileable style;
and (2) can apply different switch block patterns for passing
tracks than starting/ending tracks. In addition, the proposed
tileable RRG generator is compatible with the wide set of
routing architecture parameters that VPR supported, including
connectivity parameters Fc,in, Fc,out, Fs, CB/SB population
and various wire segments. The RRG generator is implemented
in VPR, available at [25].
A. Auto-arrange Tileable Routing Channels

A tileable routing architecture forces a few restrictions on
the width of routing channels as well as array sizes. First, for
each segment group, the number of routing tracks should be
the multiple of its length. Take the example of length-2 wires
in Fig. 2(b); the number of length-2 routing tracks should be an
even number. Otherwise, due to the wire twisting, the last few
tracks in the group will be length-1 wires instead of length-2.
Therefore, considering various lengths of wire segments, the
width of a tileable routing channel (W ) is constrained by:

W =
∑
L

fL · L, (1)

where L denotes the length of each type of wire segment and
fL is the frequency of wire segments in a routing channel.
This requires designers to carefully craft the W w.r.t. L and
fL. To avoid such effort, we adapted the channel builder of
VPR to arrange routing channels by adding groups of wire
segments according to their lengths. As detailed in Algorithm
1, the builder keep adding a set of tracks whose size equals to
the length of wires, until the channel width is satisfied. Note
that assigned W may not be the same as required W but is
the closest number which is tileable. To guarantee tileable
architectures even in search of best routing channel width, the

wire types: a list of wire types.
required W: Routing channel width specified by users.
Function chan_builder(required W, wire types):

foreach L ∈ wire types do
compute_num_tracks_per_type();

end
while assigned W < required W do

maxfL = max_num _tracks(wire types);
assigned W += L_of_wire(maxfL);
maxfL -= L_of_wire(maxfL);

end
end

Algorithm 1: Tileable routing channel arranging algo-
rithm (pseudo-code).



<!-- Switch block with a mix of Subset and Universal
patterns -->
<switch_block type="subset" fs="3" sub_type="universal"
sub_fs="3"/>

Fig. 3: Examples of extended XML syntax for switch block patterns.

Starting routing tracks Ending routing tracks Passing routing tracks 

+

(a) (b)

Fig. 4: An illustrative example of mixed switch block patterns: (left)
starting/ending tracks follow the Subset pattern; (right) passing tracks
follow the Universal pattern and are bent in a staggered style [6]; both
are combined in the actual switch block.

binary-search placement & routing engine is adapted to use the
tileable W provided by Algorithm 1. Similarly, the array size
should be the multiple of all the lengths of wires, in order to
guarantee regular wires even at the fringes of FPGAs. Consider
the example in Fig. 2(b), when the array width is an odd
number, there would be length-1 wires at the left/right borders
of FPGAs. In this paper, to guarantee the fine-granularity, we
consider both restrictions in sizing the FPGAs.

B. Support for Mixed Switch Block Patterns

To customize the switch block patterns for passing tracks,
we added two new XML tags to the VPR architecture
description language [23], as shown in Fig. 3. The XML
property sub_type specifies the interconnection pattern for
passing tracks, while sub_fs denotes the connectivity of
passing tracks. Supporting the most popular patterns, type
and sub_type could be any combination of Subset, Universal
and Wilton. In addition, sub_fs can be different than the
connectivity of starting/ending tracks fs, enabling a larger
architecture exploration space than before. Fig. 4 depicts the
corresponding switch block in an illustrative case, where uni-
directional length-2 wires are interconnected in a routing
channel width of W = 4. Note that when the length of wires is
larger than 2, the number of passing tracks will be much larger
than the number of start tracks in a switch block. Our RRG
generator applies a round-robin scheme to routing tracks on
each side of switch blocks (VPR does similarly but considering
all the routing tracks as a group), in order to balance the
multiplexer size. For each routing track, our RRG is larger
in routing multiplexer sizes than VPR but more routable. To
exploit the tileable RRG, we will study the best combination
of switch block patterns in Section IV-C.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental methodol-
ogy and then evaluate the performance of tileable architectures
by comparing to non-tileable non-tileable ones.

A. Experimental Methodology

In this paper, we considered a Stratix-IV-like FPGA ar-
chitecture using a commercial 40nm technology, modeled by

the VTR project [23] 1. Each CLB consists of 10 BLEs and
a local routing architecture with 50% connectivity, and each
BLE can operate at either 6-LUT or dual 5-LUT or arithmetic
modes. DSP and memory blocks are repeated in every 8
columns. Global routing is uni-directional with 80% of length-
4 routing tracks and 20% of length-16 routing tracks. CB
connectivity is set to Fc,in = 0.15 while SB connectivity is
set to Fc,out = 0.1. For a fair comparison, non-tileable FPGAs
can use any routing channel width (W ), while the tileable
FPGAs is constrained by equation 1. Two sets of evaluation
are performed with the MCNC big20 and VTR benchmarks
[23], [24]: (1) the traditional architecture exploration flow [1],
where area utilization and critical path delays are achieved
by adding a 30% slack to the best routing channel width
(Wmin); (2) layout-level fabric comparison, where we employ
a synthesizable FPGA design flow [14] and evaluate the layout
area between two FPGAs. In this case, we set W = 320 for
both FPGAs, similar to commercial products [8], [9].

B. Architecture Regularity and Layout Area

To validate the regularity of our tileable RRG, we use
graph matching to identify the replicated CBs and SBs in both
tileable and non-tileable architectures. For a fair comparison,
we consider only tileable array sizes for both architectures,
ranging from 16 × 16 to 128 × 128. Table I compares the
number of unique tiles in both architectures. Even though the
unidirectional architecture from VPR is not designed to be
tileable [23], there are still many tiles that are repeatable when
applying staggered routing segments [6]. However, the number
of unique tiles remain too large, requiring complete manual
layouts for a ∼ 9×9 array. Note that FPGA regularity could be
much worse when longer wire segments (> 16) are introduced.
In contrast, the tileable architecture has a constant number
(= 9) of unique tiles, as colored in Fig. 1, whatever the array
sizes are. The results prove the proposed RRG can minimize
the number of tiles to be laid out, showing an improvement
of 9.3× compared to non-tileable architectures. To propose an
apple-to-apple comparison, we compare the layout area of the
two architectures using OpenFPGA, a fast FPGA prototyping
tool [14]. The array sizes are fixed to 32 × 16, which is the
minimum tileable array size that fits the largest MCNC big20
benchmark. The non-tileable FPGA consumes 14.016mm2

while the tileable FPGA requires 14.008mm2, showing the
same area efficiency.

TABLE I: Number of unique tiles in FPGAs.
#. of Unique Tiles Homogeneous Heterogeneous

Array Size VPR Tileable VPR Tileable
16× 16 80 9 148 27
32× 32 84 9 174 27
64× 64 84 9 178 27

128× 128 84 9 174 27

C. Best Switch Block Patterns

We then investigate the best switch block patterns for
tileable routing architecture, by enumerating all the possible
combinations of Subset, Universal and Wilton patterns for
switch blocks. Fig. 5 compares the area, delay and minimum
routing channel width Wmin between the non-tileable and
tileable architectures. In non-tileable architecture, Wilton and
Universal patterns are the best choices, being 2% smaller in
Wmin and 1% better in area-delay product than Subset. The
conclusion is consistent with previous works and also explains

1https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/
vtr flow/arch/timing/k6 frac N10 frac chain depop50 mem32K 40nm.xml



m
in

VPR RRG

Fig. 5: Area, delay and channel width comparison between non-tileable and tileable FPGAs using different switch block patterns averaged over
MCNC big-20 and VTR benchmarks (subset×universal denotes using subset pattern for start/ending tracks and universal for passing tracks).

well why Wilton SB is popular in many FPGA research papers.
Differently, in tileable architecture, Subset patterns are the most
routable but with a 3% overhead in area-delay product than the
baseline. When considering mixed switch block patterns, using
Universal for starting/ending tracks and Subset for passing
tracks (Universal×Subset) leads to the best area-delay product.
On average, the tileable FPGAs improve 13% in Wmin than
the non-tileable counterparts. This is due to that the passing
tracks use Subset/Universal/Wilton are more routable than those
using round-robin schemes. When compared to the best non-
tileable architecture, the Universal×Subset tileable FPGA has
a 2% area-delay product improvement, showing the promise
of tileable architectures.

V. CONCLUSION

In this paper, we provide a detailed analysis of tileable and
non-tileable FPGAs considering modern routing architectures.
We propose a tileable Routing Resource Graph generator which
can support different switch block patterns for (1) the routing
tracks that start/end in a tile and (2) the routing tracks that
pass a tile. Experimental results show that averaged over the
MCNC and VTR benchmarks, when compared to the well-
optimized non-tileable architectures, the tileable architectures
can improve the minimum routable channel width by 13% and
area-delay product by 2%. In particular, our results showed
that in the context of tileable FPGA, a mix of Universal and
Subset switch block patterns lead to the best trade-off in area,
delay and routability.

ACKNOWLEDGMENT

This material is based on research sponsored by Air Force Research Laboratory
(AFRL) and Defense Advanced Research Projects Agency (DARPA) under agreement
number FA8650-18-2-7855. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of Air Force Research Laboratory (AFRL) and Defense Advanced
Research Projects Agency (DARPA) or the U.S. Government.

REFERENCES

[1] V. Betz et al., Architecture and CAD for Deep-Submicron FPGAs, Kluwer
Academic Publishers, 1998.

[2] I. Kuon et al., Design, Layout and Verification of an FPGA Using
Automated Tools, ACM/SIGDA FPGA, 2005, pp. 215-226.

[3] S. Feng et al., Tileable Field-Programmable Gate Array Architecture,
U.S. Patent 7,015,719, 2006.

[4] D. Tavana et al., FPGA architecture with Repeatable Tiles Including
Routing Matrices and Logic Matrices, U.S. Patent 5,914,616, 1999.

[5] P. Chow et al., The Design of a SRAM-based Field-Programmable Gate
Array-Part II: Circuit Design and Layout, IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 7, no. 3, pp. 321-330, 1999.

[6] V. Betz et al., Automatic Generation of FPGA Routing Architectures from
High-level Descriptions, ACM/SIGDA FPGA, 2000, pp. 175-184.

[7] S. A. Razavi et al., A Tileable Switch Module Architecture for Ho-
mogeneous 3D FPGAs, IEEE International Conference on 3D System
Integration, 2009, pp. 1-4.

[8] Altera Corporation, Stratix IV device handbook version SIV5V1-4.8,
January 2016, available online. https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/hb/stratix-iv/stratix4 handbook.pdf

[9] Xilinx Corporation, 7 Series FPGAs Data Sheet: Overview DS180
(v2.6), February 2018, available online. https://www.xilinx.com/support/
documentation/data sheets/ds180 7Series Overview.pdf

[10] J. Kim et al., Synthesizable Standard Cell FPGA Fabrics Targetable
by the Verilog-to-Routing (VTR) CAD Flow, ACM Transactions on
Reconfigurable Technology and Systems, Vol. 10, No. 2, 2017.

[11] B. Grady et al., Synthesizable Heterogeneous FPGA Fabrics, IEEE FPT,
2018, pp. 1-8.

[12] H. Liu, Archipelago - An Open Source FPGA with Toolflow Support,
Master Thesis, University of California, Berkeley, 2014.

[13] X. Tang et al., FPGA-SPICE: A Simulation-Based Architecture Evalu-
ation Framework for FPGAs, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 27, No. 3, pp. 637-650, 2019.

[14] X. Tang et al., OpenFPGA: An Opensource Framework Enabling Rapid
Prototyping of Customizable FPGAs, IEEE FPL, 2019, pp. 1-8.

[15] O. Petelin et al., The Speed of Diversity: Exploring Complex FPGA
Routing Topologies for the Global Metal Layer, IEEE FPL, 2016, pp.
1–10.

[16] S. Sivaswamy et al., HARP: Hard-wired Routing Pattern FPGAs,
ACM/SIGDA FPGA, 2005, pp. 21–29.

[17] G. Lemieux et al., Directional and Single-driver Wires in FPGA
Interconnect, IEEE International Conference on Field-Programmable
Technology(FPT), 2004, pp. 41–48.

[18] M. Lin et al., TORCH: A Design Tool for Routing Channel Segmentation
in FPGAs, ACM/SIGDA FPGA, 2008, pp. 131–138.

[19] Y.-W. Chang et al., Universal Switch Blocks for FPGA Design, ACM
Transactions Design Automation of Electronic Systems, Vol.1, No.1, pp.
80–101, 1996.

[20] G. Lemieux et al., On Two-step Routing for FPGAs, International
Symposium on Physical Design, 1997, pp. 60–66.

[21] S. Wilton et al., Architecture and Algorithms for Field-Programmable
Gate Arrays with Embedded Memory, PhD thesis, University of Toronto,
1997.

[22] M. Imran Masud et al., A New Switch Block for Segmented FPGAs,
IEEE FPL, 1999, pp. 274-281.

[23] J. Luu et al., VTR 7.0: Next Generation Architecture and CAD System
for FPGAs, ACM Transaction Reconfigurable Technology System, Vol.
7, No. 2, 2014.

[24] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide
Version 3.0, MCNC, Jan. 1991.

[25] https://github.com/LNIS-Projects/OpenFPGA


