Skip to content

Create financial_ai_model.py #25

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
76 changes: 76 additions & 0 deletions financial_ai_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.ensemble import IsolationForest
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout

# Load data transaksi (dummy data)
def load_transaction_data():
data = {
"timestamp": pd.date_range(start="2025-01-01", periods=500, freq="H"),
"amount": np.random.uniform(1, 1000, 500),
"fee": np.random.uniform(0.1, 5, 500),
"balance": np.cumsum(np.random.uniform(-50, 50, 500))
}
df = pd.DataFrame(data)
return df

# **1. Deteksi Anomali Transaksi dengan Isolation Forest**
def detect_anomalies(df):
model = IsolationForest(n_estimators=100, contamination=0.05, random_state=42)
df["anomaly"] = model.fit_predict(df[["amount", "fee", "balance"]])
return df

# **2. Prediksi Tren Keuangan dengan LSTM**
def prepare_lstm_data(df):
scaler = MinMaxScaler()
df_scaled = scaler.fit_transform(df[["balance"]])

X, y = [], []
for i in range(len(df_scaled) - 10):
X.append(df_scaled[i:i+10])
y.append(df_scaled[i+10])

return np.array(X), np.array(y), scaler

def build_lstm_model():
model = Sequential([
LSTM(50, activation='relu', return_sequences=True, input_shape=(10, 1)),
Dropout(0.2),
LSTM(50, activation='relu'),
Dropout(0.2),
Dense(1)
])
model.compile(optimizer='adam', loss='mse')
return model

# **3. Rekomendasi Strategi Transaksi**
def transaction_recommendation(df):
avg_fee = df["fee"].mean()
if df["balance"].iloc[-1] < 100:
return "Saldo rendah! Kurangi transaksi besar."
elif avg_fee > 2:
return "Biaya transaksi tinggi. Gunakan strategi batch processing."
else:
return "Transaksi dalam batas normal."

# **Menjalankan Model**
df = load_transaction_data()
df = detect_anomalies(df)

X, y, scaler = prepare_lstm_data(df)
model = build_lstm_model()

# **Latih Model**
model.fit(X, y, epochs=10, batch_size=16, verbose=1)

# **Prediksi Tren Masa Depan**
future_balance = model.predict(X[-1].reshape(1, 10, 1))
future_balance = scaler.inverse_transform(future_balance.reshape(-1, 1))

# **Output Analisis**
print("\n🔍 Anomali yang terdeteksi:", df[df["anomaly"] == -1][["timestamp", "amount", "fee"]])
print("\n📈 Prediksi saldo keuangan selanjutnya:", future_balance[0][0])
print("\n✅ Rekomendasi transaksi:", transaction_recommendation(df))