Skip to content

NaN losses during training! #86

Closed
Closed
@amirhfarzaneh

Description

@amirhfarzaneh

I'm following the exact same instructions for training, but during training with the command
./experiments/scripts/train_faster_rcnn.sh 0 pascal_voc vgg16

+ set -e
+ export PYTHONUNBUFFERED=True
+ PYTHONUNBUFFERED=True
+ GPU_ID=0
+ DATASET=pascal_voc
+ NET=vgg16
+ array=($@)
+ len=3
+ EXTRA_ARGS=
+ EXTRA_ARGS_SLUG=
+ case ${DATASET} in
+ TRAIN_IMDB=voc_2007_trainval
+ TEST_IMDB=voc_2007_test
+ STEPSIZE=50000
+ ITERS=70000
+ ANCHORS='[8,16,32]'
+ RATIOS='[0.5,1,2]'
++ date +%Y-%m-%d_%H-%M-%S
+ LOG=experiments/logs/vgg16_voc_2007_trainval__vgg16.txt.2017-05-11_18-12-08
+ exec
++ tee -a experiments/logs/vgg16_voc_2007_trainval__vgg16.txt.2017-05-11_18-12-08
+ echo Logging output to experiments/logs/vgg16_voc_2007_trainval__vgg16.txt.2017-05-11_18-12-08
Logging output to experiments/logs/vgg16_voc_2007_trainval__vgg16.txt.2017-05-11_18-12-08
+ set +x
+ '[' '!' -f output/vgg16/voc_2007_trainval/default/vgg16_faster_rcnn_iter_70000.ckpt.index ']'
+ [[ ! -z '' ]]
+ CUDA_VISIBLE_DEVICES=0
+ time python ./tools/trainval_net.py --weight data/imagenet_weights/vgg16.ckpt --imdb voc_2007_trainval --imdbval voc_2007_test --iters 70000 --cfg experiments/cfgs/vgg16.yml --net vgg16 --set ANCHOR_SCALES '[8,16,32]' ANCHOR_RATIOS '[0.5,1,2]' TRAIN.STEPSIZE 50000
Called with args:
Namespace(cfg_file='experiments/cfgs/vgg16.yml', imdb_name='voc_2007_trainval', imdbval_name='voc_2007_test', max_iters=70000, net='vgg16', set_cfgs=['ANCHOR_SCALES', '[8,16,32]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'TRAIN.STEPSIZE', '50000'], tag=None, weight='data/imagenet_weights/vgg16.ckpt')
Using config:
{'ANCHOR_RATIOS': [0.5, 1, 2],
 'ANCHOR_SCALES': [8, 16, 32],
 'DATA_DIR': '/home/amirhf/Projects/tf-faster-rcnn/data',
 'DEDUP_BOXES': 0.0625,
 'EPS': 1e-14,
 'EXP_DIR': 'vgg16',
 'GPU_ID': 0,
 'MATLAB': 'matlab',
 'PIXEL_MEANS': array([[[ 102.9801,  115.9465,  122.7717]]]),
 'POOLING_MODE': 'crop',
 'POOLING_SIZE': 7,
 'RESNET': {'BN_TRAIN': False, 'FIXED_BLOCKS': 1, 'MAX_POOL': False},
 'RNG_SEED': 3,
 'ROOT_DIR': '/home/amirhf/Projects/tf-faster-rcnn',
 'TEST': {'BBOX_REG': True,
          'HAS_RPN': True,
          'MAX_SIZE': 1000,
          'MODE': 'nms',
          'NMS': 0.3,
          'PROPOSAL_METHOD': 'gt',
          'RPN_NMS_THRESH': 0.7,
          'RPN_POST_NMS_TOP_N': 300,
          'RPN_PRE_NMS_TOP_N': 6000,
          'RPN_TOP_N': 5000,
          'SCALES': [600],
          'SVM': False},
 'TRAIN': {'ASPECT_GROUPING': False,
           'BATCH_SIZE': 256,
           'BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
           'BBOX_NORMALIZE_MEANS': [0.0, 0.0, 0.0, 0.0],
           'BBOX_NORMALIZE_STDS': [0.1, 0.1, 0.2, 0.2],
           'BBOX_NORMALIZE_TARGETS': True,
           'BBOX_NORMALIZE_TARGETS_PRECOMPUTED': True,
           'BBOX_REG': True,
           'BBOX_THRESH': 0.5,
           'BG_THRESH_HI': 0.5,
           'BG_THRESH_LO': 0.0,
           'BIAS_DECAY': False,
           'DISPLAY': 20,
           'DOUBLE_BIAS': True,
           'FG_FRACTION': 0.25,
           'FG_THRESH': 0.5,
           'GAMMA': 0.1,
           'HAS_RPN': True,
           'IMS_PER_BATCH': 1,
           'LEARNING_RATE': 0.001,
           'MAX_SIZE': 1000,
           'MOMENTUM': 0.9,
           'PROPOSAL_METHOD': 'gt',
           'RPN_BATCHSIZE': 256,
           'RPN_BBOX_INSIDE_WEIGHTS': [1.0, 1.0, 1.0, 1.0],
           'RPN_CLOBBER_POSITIVES': False,
           'RPN_FG_FRACTION': 0.5,
           'RPN_NEGATIVE_OVERLAP': 0.3,
           'RPN_NMS_THRESH': 0.7,
           'RPN_POSITIVE_OVERLAP': 0.7,
           'RPN_POSITIVE_WEIGHT': -1.0,
           'RPN_POST_NMS_TOP_N': 2000,
           'RPN_PRE_NMS_TOP_N': 12000,
           'SCALES': [600],
           'SNAPSHOT_ITERS': 5000,
           'SNAPSHOT_KEPT': 3,
           'SNAPSHOT_PREFIX': 'vgg16_faster_rcnn',
           'STEPSIZE': 50000,
           'SUMMARY_INTERVAL': 180,
           'TRUNCATED': False,
           'USE_ALL_GT': True,
           'USE_FLIPPED': True,
           'USE_GT': False,
           'WEIGHT_DECAY': 0.0005},
 'USE_GPU_NMS': True}
Loaded dataset `voc_2007_trainval` for training
Set proposal method: gt
Appending horizontally-flipped training examples...
wrote gt roidb to /home/amirhf/Projects/tf-faster-rcnn/data/cache/voc_2007_trainval_gt_roidb.pkl
done
Preparing training data...
done
10022 roidb entries
Output will be saved to `/home/amirhf/Projects/tf-faster-rcnn/output/vgg16/voc_2007_trainval/default`
TensorFlow summaries will be saved to `/home/amirhf/Projects/tf-faster-rcnn/tensorboard/vgg16/voc_2007_trainval/default`
Loaded dataset `voc_2007_test` for training
Set proposal method: gt
Preparing training data...
wrote gt roidb to /home/amirhf/Projects/tf-faster-rcnn/data/cache/voc_2007_test_gt_roidb.pkl
done
4952 validation roidb entries
Filtered 0 roidb entries: 10022 -> 10022
Filtered 0 roidb entries: 4952 -> 4952
2017-05-11 18:12:37.107319: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-11 18:12:37.107338: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-11 18:12:37.107344: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-05-11 18:12:37.107350: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-05-11 18:12:37.404484: I tensorflow/core/common_runtime/gpu/gpu_device.cc:887] Found device 0 with properties: 
name: GeForce GTX 980 Ti
major: 5 minor: 2 memoryClockRate (GHz) 1.291
pciBusID 0000:01:00.0
Total memory: 5.93GiB
Free memory: 5.27GiB
2017-05-11 18:12:37.404517: I tensorflow/core/common_runtime/gpu/gpu_device.cc:908] DMA: 0 
2017-05-11 18:12:37.404523: I tensorflow/core/common_runtime/gpu/gpu_device.cc:918] 0:   Y 
2017-05-11 18:12:37.404537: I tensorflow/core/common_runtime/gpu/gpu_device.cc:977] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 980 Ti, pci bus id: 0000:01:00.0)
Solving...
/home/amirhf/.local/lib/python2.7/site-packages/tensorflow/python/ops/gradients_impl.py:93: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
  "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
Loading initial model weights from data/imagenet_weights/vgg16.ckpt
Varibles restored: vgg_16/conv1/conv1_1/biases:0
Varibles restored: vgg_16/conv1/conv1_2/weights:0
Varibles restored: vgg_16/conv1/conv1_2/biases:0
Varibles restored: vgg_16/conv2/conv2_1/weights:0
Varibles restored: vgg_16/conv2/conv2_1/biases:0
Varibles restored: vgg_16/conv2/conv2_2/weights:0
Varibles restored: vgg_16/conv2/conv2_2/biases:0
Varibles restored: vgg_16/conv3/conv3_1/weights:0
Varibles restored: vgg_16/conv3/conv3_1/biases:0
Varibles restored: vgg_16/conv3/conv3_2/weights:0
Varibles restored: vgg_16/conv3/conv3_2/biases:0
Varibles restored: vgg_16/conv3/conv3_3/weights:0
Varibles restored: vgg_16/conv3/conv3_3/biases:0
Varibles restored: vgg_16/conv4/conv4_1/weights:0
Varibles restored: vgg_16/conv4/conv4_1/biases:0
Varibles restored: vgg_16/conv4/conv4_2/weights:0
Varibles restored: vgg_16/conv4/conv4_2/biases:0
Varibles restored: vgg_16/conv4/conv4_3/weights:0
Varibles restored: vgg_16/conv4/conv4_3/biases:0
Varibles restored: vgg_16/conv5/conv5_1/weights:0
Varibles restored: vgg_16/conv5/conv5_1/biases:0
Varibles restored: vgg_16/conv5/conv5_2/weights:0
Varibles restored: vgg_16/conv5/conv5_2/biases:0
Varibles restored: vgg_16/conv5/conv5_3/weights:0
Varibles restored: vgg_16/conv5/conv5_3/biases:0
Varibles restored: vgg_16/fc6/biases:0
Varibles restored: vgg_16/fc7/biases:0
Loaded.
Fix VGG16 layers..
iter: 20 / 70000, total loss: 1.780578
 >>> rpn_loss_cls: 0.331266
 >>> rpn_loss_box: 0.058807
 >>> loss_cls: 0.851354
 >>> loss_box: 0.539151
 >>> lr: 0.001000
speed: 0.908s / iter
iter: 40 / 70000, total loss: 0.701749
 >>> rpn_loss_cls: 0.551406
 >>> rpn_loss_box: 0.128653
 >>> loss_cls: 0.021690
 >>> loss_box: 0.000000
 >>> lr: 0.001000
.
.  [REMOVED LINES TO MAKE THE POST SHORTER]
.
.
iter: 3380 / 70000, total loss: 0.616202
 >>> rpn_loss_cls: 0.100265
 >>> rpn_loss_box: 0.145635
 >>> loss_cls: 0.185931
 >>> loss_box: 0.184371
 >>> lr: 0.001000
speed: 0.433s / iter
iter: 3400 / 70000, total loss: 1.312786
 >>> rpn_loss_cls: 0.295694
 >>> rpn_loss_box: 0.017820
 >>> loss_cls: 0.452280
 >>> loss_box: 0.546992
 >>> lr: 0.001000
speed: 0.432s / iter
iter: 3420 / 70000, total loss: 0.642559
 >>> rpn_loss_cls: 0.132440
 >>> rpn_loss_box: 0.039820
 >>> loss_cls: 0.293447
 >>> loss_box: 0.176852
 >>> lr: 0.001000
speed: 0.431s / iter
/home/amirhf/Projects/tf-faster-rcnn/tools/../lib/model/bbox_transform.py:56: RuntimeWarning: invalid value encountered in subtract
  pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
/home/amirhf/Projects/tf-faster-rcnn/tools/../lib/model/bbox_transform.py:58: RuntimeWarning: invalid value encountered in subtract
  pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
/home/amirhf/Projects/tf-faster-rcnn/tools/../lib/model/bbox_transform.py:60: RuntimeWarning: invalid value encountered in add
  pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w
/home/amirhf/Projects/tf-faster-rcnn/tools/../lib/model/bbox_transform.py:62: RuntimeWarning: invalid value encountered in add
  pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h
iter: 3440 / 70000, total loss: nan
 >>> rpn_loss_cls: nan
 >>> rpn_loss_box: nan
 >>> loss_cls: nan
 >>> loss_box: nan
 >>> lr: 0.001000

There are those

RuntimeWarning: invalid value encountered in subtract
  pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w

errors and from there, losses become nan! I have changed nothing in the files!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions