Skip to content

Rewrite the tests structure #92

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jan 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
138 changes: 79 additions & 59 deletions tests/extensions.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,24 +2,28 @@
import torch
from torch_struct import LogSemiring
import itertools
from hypothesis.strategies import integers, composite, floats
from hypothesis.extra.numpy import arrays
import numpy as np


class LinearChainTest:
def __init__(self, semiring=LogSemiring):
self.semiring = semiring

@staticmethod
def _rand(min_n=2):
b = torch.randint(2, 4, (1,))
N = torch.randint(min_n, 4, (1,))
C = torch.randint(2, 4, (1,))
return torch.rand(b, N, C, C), (b.item(), (N + 1).item())
@composite
def logpotentials(draw, min_n=2):
b = draw(integers(min_value=2, max_value=3))
N = draw(integers(min_value=min_n, max_value=3))
C = draw(integers(min_value=2, max_value=3))
logp = draw(
arrays(np.float, (b, N, C, C), floats(min_value=-100.0, max_value=100.0))
)
return torch.tensor(logp), (b, (N + 1))

### Tests

def enumerate(self, edge, lengths=None):
model = torch_struct.LinearChain(self.semiring)
semiring = self.semiring
@staticmethod
def enumerate(semiring, edge, lengths=None):
model = torch_struct.LinearChain(semiring)
semiring = semiring
ssize = semiring.size()
edge, batch, N, C, lengths = model._check_potentials(edge, lengths)
chains = [[([c], semiring.one_(torch.zeros(ssize, batch))) for c in range(C)]]
Expand Down Expand Up @@ -66,17 +70,18 @@ def enumerate(self, edge, lengths=None):


class DepTreeTest:
def __init__(self, semiring=LogSemiring):
self.semiring = semiring

@staticmethod
def _rand():
b = torch.randint(2, 4, (1,))
N = torch.randint(2, 4, (1,))
return torch.rand(b, N, N), (b.item(), N.item())
@composite
def logpotentials(draw):
b = draw(integers(min_value=2, max_value=3))
N = draw(integers(min_value=2, max_value=3))
logp = draw(
arrays(np.float, (b, N, N), floats(min_value=-10.0, max_value=10.0))
)
return torch.tensor(logp), (b, N)

def enumerate(self, arc_scores, non_proj=False, multi_root=True):
semiring = self.semiring
@staticmethod
def enumerate(semiring, arc_scores, non_proj=False, multi_root=True):
parses = []
q = []
arc_scores = torch_struct.convert(arc_scores)
Expand All @@ -101,21 +106,23 @@ def enumerate(self, arc_scores, non_proj=False, multi_root=True):


class SemiMarkovTest:
def __init__(self, semiring=LogSemiring):
self.semiring = semiring

# Tests

@staticmethod
def _rand():
b = torch.randint(2, 4, (1,))
N = torch.randint(2, 4, (1,))
K = torch.randint(2, 4, (1,))
C = torch.randint(2, 4, (1,))
return torch.rand(b, N, K, C, C), (b.item(), (N + 1).item())
@composite
def logpotentials(draw):
b = draw(integers(min_value=2, max_value=3))
N = draw(integers(min_value=2, max_value=3))
K = draw(integers(min_value=2, max_value=3))
C = draw(integers(min_value=2, max_value=3))
logp = draw(
arrays(np.float, (b, N, K, C, C), floats(min_value=-100.0, max_value=100.0))
)
return torch.tensor(logp), (b, (N + 1))

def enumerate(self, edge):
semiring = self.semiring
@staticmethod
def enumerate(semiring, edge):
ssize = semiring.size()
batch, N, K, C, _ = edge.shape
edge = semiring.convert(edge)
Expand Down Expand Up @@ -213,12 +220,22 @@ def _is_projective(parse):


class CKY_CRFTest:
def __init__(self, semiring=LogSemiring):
self.semiring = semiring
@staticmethod
@composite
def logpotentials(draw):
batch = draw(integers(min_value=2, max_value=4))
N = draw(integers(min_value=2, max_value=4))
NT = draw(integers(min_value=2, max_value=4))
logp = draw(
arrays(
np.float, (batch, N, N, NT), floats(min_value=-100.0, max_value=100.0)
)
)
return torch.tensor(logp), (batch, N)

# For testing
def enumerate(self, scores):
semiring = self.semiring
@staticmethod
def enumerate(semiring, scores):
semiring = semiring
batch, N, _, NT = scores.shape

def enumerate(x, start, end):
Expand All @@ -243,22 +260,36 @@ def enumerate(x, start, end):

return semiring.sum(torch.stack(ls, dim=-1)), None

@staticmethod
def _rand():
batch = torch.randint(2, 5, (1,))
N = torch.randint(2, 5, (1,))
NT = torch.randint(2, 5, (1,))
scores = torch.rand(batch, N, N, NT)
return scores, (batch.item(), N.item())


class CKYTest:
def __init__(self, semiring=LogSemiring):
self.semiring = semiring
@staticmethod
@composite
def logpotentials(draw):
batch = draw(integers(min_value=2, max_value=3))
N = draw(integers(min_value=2, max_value=4))
NT = draw(integers(min_value=2, max_value=3))
T = draw(integers(min_value=2, max_value=3))
terms = draw(
arrays(np.float, (batch, N, T), floats(min_value=-100.0, max_value=100.0))
)
rules = draw(
arrays(
np.float,
(batch, NT, NT + T, NT + T),
floats(min_value=-100.0, max_value=100.0),
)
)
roots = draw(
arrays(np.float, (batch, NT), floats(min_value=-100.0, max_value=100.0))
)
return (torch.tensor(terms), torch.tensor(rules), torch.tensor(roots)), (
batch,
N,
)

def enumerate(self, scores):
@staticmethod
def enumerate(semiring, scores):
terms, rules, roots = scores
semiring = self.semiring
batch, N, T = terms.shape
_, NT, _, _ = rules.shape

Expand All @@ -283,17 +314,6 @@ def enumerate(x, start, end):
ls += [semiring.times(s, roots[:, nt]) for s, _ in enumerate(nt, 0, N)]
return semiring.sum(torch.stack(ls, dim=-1)), None

@staticmethod
def _rand():
batch = torch.randint(2, 5, (1,))
N = torch.randint(2, 5, (1,))
NT = torch.randint(2, 5, (1,))
T = torch.randint(2, 5, (1,))
terms = torch.rand(batch, N, T)
rules = torch.rand(batch, NT, (NT + T), (NT + T))
roots = torch.rand(batch, NT)
return (terms, rules, roots), (batch.item(), N.item())


class AlignmentTest:
def __init__(self, semiring=LogSemiring):
Expand Down
Loading