Skip to content

[libc] Improve qsort #120450

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Dec 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions libc/src/stdlib/heap_sort.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,12 @@ namespace internal {
// A simple in-place heapsort implementation.
// Follow the implementation in https://en.wikipedia.org/wiki/Heapsort.

LIBC_INLINE void heap_sort(const Array &array) {
size_t end = array.size();
template <typename A, typename F>
LIBC_INLINE void heap_sort(const A &array, const F &is_less) {
size_t end = array.len();
size_t start = end / 2;

auto left_child = [](size_t i) -> size_t { return 2 * i + 1; };
const auto left_child = [](size_t i) -> size_t { return 2 * i + 1; };

while (end > 1) {
if (start > 0) {
Expand All @@ -40,12 +41,11 @@ LIBC_INLINE void heap_sort(const Array &array) {
while (left_child(root) < end) {
size_t child = left_child(root);
// If there are two children, set child to the greater.
if (child + 1 < end &&
array.elem_compare(child, array.get(child + 1)) < 0)
if ((child + 1 < end) && is_less(array.get(child), array.get(child + 1)))
++child;

// If the root is less than the greater child
if (array.elem_compare(root, array.get(child)) >= 0)
if (!is_less(array.get(root), array.get(child)))
break;

// Swap the root with the greater child and continue sifting down.
Expand Down
10 changes: 4 additions & 6 deletions libc/src/stdlib/qsort.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -18,14 +18,12 @@ namespace LIBC_NAMESPACE_DECL {
LLVM_LIBC_FUNCTION(void, qsort,
(void *array, size_t array_size, size_t elem_size,
int (*compare)(const void *, const void *))) {
if (array == nullptr || array_size == 0 || elem_size == 0)
return;
internal::Comparator c(compare);

auto arr = internal::Array(reinterpret_cast<uint8_t *>(array), array_size,
elem_size, c);
const auto is_less = [compare](const void *a, const void *b) -> bool {
return compare(a, b) < 0;
};

internal::sort(arr);
internal::unstable_sort(array, array_size, elem_size, is_less);
}

} // namespace LIBC_NAMESPACE_DECL
171 changes: 101 additions & 70 deletions libc/src/stdlib/qsort_data.h
Original file line number Diff line number Diff line change
Expand Up @@ -17,91 +17,122 @@
namespace LIBC_NAMESPACE_DECL {
namespace internal {

using Compare = int(const void *, const void *);
using CompareWithState = int(const void *, const void *, void *);

enum class CompType { COMPARE, COMPARE_WITH_STATE };

struct Comparator {
union {
Compare *comp_func;
CompareWithState *comp_func_r;
};
const CompType comp_type;

void *arg;

Comparator(Compare *func)
: comp_func(func), comp_type(CompType::COMPARE), arg(nullptr) {}

Comparator(CompareWithState *func, void *arg_val)
: comp_func_r(func), comp_type(CompType::COMPARE_WITH_STATE),
arg(arg_val) {}

#if defined(__clang__)
// Recent upstream changes to -fsanitize=function find more instances of
// function type mismatches. One case is with the comparator passed to this
// class. Libraries will tend to pass comparators that take pointers to
// varying types while this comparator expects to accept const void pointers.
// Ideally those tools would pass a function that strictly accepts const
// void*s to avoid UB, or would use qsort_r to pass their own comparator.
[[clang::no_sanitize("function")]]
#endif
int comp_vals(const void *a, const void *b) const {
if (comp_type == CompType::COMPARE) {
return comp_func(a, b);
} else {
return comp_func_r(a, b, arg);
class ArrayGenericSize {
cpp::byte *array_base;
size_t array_len;
size_t elem_size;

LIBC_INLINE cpp::byte *get_internal(size_t i) const {
return array_base + (i * elem_size);
}

public:
LIBC_INLINE ArrayGenericSize(void *a, size_t s, size_t e)
: array_base(reinterpret_cast<cpp::byte *>(a)), array_len(s),
elem_size(e) {}

static constexpr bool has_fixed_size() { return false; }

LIBC_INLINE void *get(size_t i) const { return get_internal(i); }

LIBC_INLINE void swap(size_t i, size_t j) const {
// It's possible to use 8 byte blocks with `uint64_t`, but that
// generates more machine code as the remainder loop gets
// unrolled, plus 4 byte operations are more likely to be
// efficient on a wider variety of hardware. On x86 LLVM tends
// to unroll the block loop again into 2 16 byte swaps per
// iteration which is another reason that 4 byte blocks yields
// good performance even for big types.
using block_t = uint32_t;
constexpr size_t BLOCK_SIZE = sizeof(block_t);

alignas(block_t) cpp::byte tmp_block[BLOCK_SIZE];

cpp::byte *elem_i = get_internal(i);
cpp::byte *elem_j = get_internal(j);

const size_t elem_size_rem = elem_size % BLOCK_SIZE;
const cpp::byte *elem_i_block_end = elem_i + (elem_size - elem_size_rem);

while (elem_i != elem_i_block_end) {
__builtin_memcpy(tmp_block, elem_i, BLOCK_SIZE);
__builtin_memcpy(elem_i, elem_j, BLOCK_SIZE);
__builtin_memcpy(elem_j, tmp_block, BLOCK_SIZE);

elem_i += BLOCK_SIZE;
elem_j += BLOCK_SIZE;
}

for (size_t n = 0; n < elem_size_rem; ++n) {
cpp::byte tmp = elem_i[n];
elem_i[n] = elem_j[n];
elem_j[n] = tmp;
}
}

LIBC_INLINE size_t len() const { return array_len; }

// Make an Array starting at index |i| and length |s|.
LIBC_INLINE ArrayGenericSize make_array(size_t i, size_t s) const {
return ArrayGenericSize(get_internal(i), s, elem_size);
}

// Reset this Array to point at a different interval of the same
// items starting at index |i|.
LIBC_INLINE void reset_bounds(size_t i, size_t s) {
array_base = get_internal(i);
array_len = s;
}
};

class Array {
uint8_t *array;
size_t array_size;
size_t elem_size;
Comparator compare;
// Having a specialized Array type for sorting that knows at
// compile-time what the size of the element is, allows for much more
// efficient swapping and for cheaper offset calculations.
template <size_t ELEM_SIZE> class ArrayFixedSize {
cpp::byte *array_base;
size_t array_len;

public:
Array(uint8_t *a, size_t s, size_t e, Comparator c)
: array(a), array_size(s), elem_size(e), compare(c) {}

uint8_t *get(size_t i) const { return array + i * elem_size; }

void swap(size_t i, size_t j) const {
uint8_t *elem_i = get(i);
uint8_t *elem_j = get(j);
for (size_t b = 0; b < elem_size; ++b) {
uint8_t temp = elem_i[b];
elem_i[b] = elem_j[b];
elem_j[b] = temp;
}
LIBC_INLINE cpp::byte *get_internal(size_t i) const {
return array_base + (i * ELEM_SIZE);
}

int elem_compare(size_t i, const uint8_t *other) const {
// An element must compare equal to itself so we don't need to consult the
// user provided comparator.
if (get(i) == other)
return 0;
return compare.comp_vals(get(i), other);
public:
LIBC_INLINE ArrayFixedSize(void *a, size_t s)
: array_base(reinterpret_cast<cpp::byte *>(a)), array_len(s) {}

// Beware this function is used a heuristic for cheap to swap types, so
// instantiating `ArrayFixedSize` with `ELEM_SIZE > 100` is probably a bad
// idea perf wise.
static constexpr bool has_fixed_size() { return true; }

LIBC_INLINE void *get(size_t i) const { return get_internal(i); }

LIBC_INLINE void swap(size_t i, size_t j) const {
alignas(32) cpp::byte tmp[ELEM_SIZE];

cpp::byte *elem_i = get_internal(i);
cpp::byte *elem_j = get_internal(j);

__builtin_memcpy(tmp, elem_i, ELEM_SIZE);
__builtin_memmove(elem_i, elem_j, ELEM_SIZE);
__builtin_memcpy(elem_j, tmp, ELEM_SIZE);
}

size_t size() const { return array_size; }
LIBC_INLINE size_t len() const { return array_len; }

// Make an Array starting at index |i| and size |s|.
LIBC_INLINE Array make_array(size_t i, size_t s) const {
return Array(get(i), s, elem_size, compare);
// Make an Array starting at index |i| and length |s|.
LIBC_INLINE ArrayFixedSize<ELEM_SIZE> make_array(size_t i, size_t s) const {
return ArrayFixedSize<ELEM_SIZE>(get_internal(i), s);
}

// Reset this Array to point at a different interval of the same items.
LIBC_INLINE void reset_bounds(uint8_t *a, size_t s) {
array = a;
array_size = s;
// Reset this Array to point at a different interval of the same
// items starting at index |i|.
LIBC_INLINE void reset_bounds(size_t i, size_t s) {
array_base = get_internal(i);
array_len = s;
}
};

using SortingRoutine = void(const Array &);

} // namespace internal
} // namespace LIBC_NAMESPACE_DECL

Expand Down
85 changes: 85 additions & 0 deletions libc/src/stdlib/qsort_pivot.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
//===-- Implementation header for qsort utilities ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIBC_SRC_STDLIB_QSORT_PIVOT_H
#define LLVM_LIBC_SRC_STDLIB_QSORT_PIVOT_H

#include <stdint.h>

namespace LIBC_NAMESPACE_DECL {
namespace internal {

// Recursively select a pseudomedian if above this threshold.
constexpr size_t PSEUDO_MEDIAN_REC_THRESHOLD = 64;

// Selects a pivot from `array`. Algorithm taken from glidesort by Orson Peters.
//
// This chooses a pivot by sampling an adaptive amount of points, approximating
// the quality of a median of sqrt(n) elements.
template <typename A, typename F>
size_t choose_pivot(const A &array, const F &is_less) {
const size_t len = array.len();

if (len < 8) {
return 0;
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This brace can also be removed.

}

const size_t len_div_8 = len / 8;

const size_t a = 0; // [0, floor(n/8))
const size_t b = len_div_8 * 4; // [4*floor(n/8), 5*floor(n/8))
const size_t c = len_div_8 * 7; // [7*floor(n/8), 8*floor(n/8))

if (len < PSEUDO_MEDIAN_REC_THRESHOLD)
return median3(array, a, b, c, is_less);
else
return median3_rec(array, a, b, c, len_div_8, is_less);
}

// Calculates an approximate median of 3 elements from sections a, b, c, or
// recursively from an approximation of each, if they're large enough. By
// dividing the size of each section by 8 when recursing we have logarithmic
// recursion depth and overall sample from f(n) = 3*f(n/8) -> f(n) =
// O(n^(log(3)/log(8))) ~= O(n^0.528) elements.
template <typename A, typename F>
size_t median3_rec(const A &array, size_t a, size_t b, size_t c, size_t n,
const F &is_less) {
if (n * 8 >= PSEUDO_MEDIAN_REC_THRESHOLD) {
const size_t n8 = n / 8;
a = median3_rec(array, a, a + (n8 * 4), a + (n8 * 7), n8, is_less);
b = median3_rec(array, b, b + (n8 * 4), b + (n8 * 7), n8, is_less);
c = median3_rec(array, c, c + (n8 * 4), c + (n8 * 7), n8, is_less);
}
return median3(array, a, b, c, is_less);
}

/// Calculates the median of 3 elements.
template <typename A, typename F>
size_t median3(const A &array, size_t a, size_t b, size_t c, const F &is_less) {
const void *a_ptr = array.get(a);
const void *b_ptr = array.get(b);
const void *c_ptr = array.get(c);

const bool x = is_less(a_ptr, b_ptr);
const bool y = is_less(a_ptr, c_ptr);
if (x == y) {
// If x=y=0 then b, c <= a. In this case we want to return max(b, c).
// If x=y=1 then a < b, c. In this case we want to return min(b, c).
// By toggling the outcome of b < c using XOR x we get this behavior.
const bool z = is_less(b_ptr, c_ptr);
return z ^ x ? c : b;
} else {
// Either c <= a < b or b <= a < c, thus a is our median.
return a;
}
}

} // namespace internal
} // namespace LIBC_NAMESPACE_DECL

#endif // LLVM_LIBC_SRC_STDLIB_QSORT_PIVOT_H
11 changes: 5 additions & 6 deletions libc/src/stdlib/qsort_r.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -19,13 +19,12 @@ LLVM_LIBC_FUNCTION(void, qsort_r,
(void *array, size_t array_size, size_t elem_size,
int (*compare)(const void *, const void *, void *),
void *arg)) {
if (array == nullptr || array_size == 0 || elem_size == 0)
return;
internal::Comparator c(compare, arg);
auto arr = internal::Array(reinterpret_cast<uint8_t *>(array), array_size,
elem_size, c);

internal::sort(arr);
const auto is_less = [compare, arg](const void *a, const void *b) -> bool {
return compare(a, b, arg) < 0;
};

internal::unstable_sort(array, array_size, elem_size, is_less);
}

} // namespace LIBC_NAMESPACE_DECL
Loading
Loading