Skip to content

[mlir][tensor] Make tensor::PadOp a ReifyRankedShapedTypeOpInterface #145867

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 26, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions mlir/include/mlir/Dialect/Tensor/IR/TensorOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -1256,6 +1256,7 @@ def Tensor_CollapseShapeOp : Tensor_ReassociativeReshapeOp<"collapse_shape"> {

def Tensor_PadOp : Tensor_Op<"pad", [
DeclareOpInterfaceMethods<OpAsmOpInterface, ["getAsmResultNames"]>,
DeclareOpInterfaceMethods<ReifyRankedShapedTypeOpInterface>,
AttrSizedOperandSegments,
Pure,
SingleBlockImplicitTerminator<"mlir::tensor::YieldOp">]> {
Expand Down
5 changes: 2 additions & 3 deletions mlir/include/mlir/Interfaces/InferTypeOpInterface.td
Original file line number Diff line number Diff line change
Expand Up @@ -366,9 +366,8 @@ def ReifyRankedShapedTypeOpInterface :

`reifiedReturnShapes` is populated with one vector per op result. Each
of those vectors contains an OpFoldResult for each dimension of the
shaped type. In case a dimension in the type is static, the
corresponding entry is an IntegerAttr. Otherwise, it is a Value. The
given builder may be used to insert ops that compute result shapes.
shaped type. The given builder may be used to insert ops that compute
result shapes.

If the shape of a particular result cannot be computed it must be empty.
}],
Expand Down
12 changes: 7 additions & 5 deletions mlir/lib/Dialect/Bufferization/IR/BufferizableOpInterface.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,12 @@
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Value.h"
Expand Down Expand Up @@ -195,9 +194,12 @@ FailureOr<Value> bufferization::allocateTensorForShapedValue(
reifiedShapes = true;
auto &shape =
resultDims[llvm::cast<OpResult>(shapedValue).getResultNumber()];
for (const auto &dim : enumerate(tensorType.getShape()))
if (ShapedType::isDynamic(dim.value()))
dynamicSizes.push_back(cast<Value>(shape[dim.index()]));
for (const auto &dim : enumerate(tensorType.getShape())) {
if (ShapedType::isDynamic(dim.value())) {
dynamicSizes.push_back(
getValueOrCreateConstantIndexOp(b, loc, shape[dim.index()]));
}
}
}
}

Expand Down
24 changes: 24 additions & 0 deletions mlir/lib/Dialect/Tensor/IR/TensorOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
Expand Down Expand Up @@ -3793,6 +3794,29 @@ struct FoldConsecutiveConstantPadding : public OpRewritePattern<tensor::PadOp> {

} // namespace

LogicalResult
PadOp::reifyResultShapes(OpBuilder &b,
ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
reifiedReturnShapes.resize(1, SmallVector<OpFoldResult>(getType().getRank()));
SmallVector<OpFoldResult> lp = getMixedLowPad();
SmallVector<OpFoldResult> hp = getMixedHighPad();
for (int64_t i = 0; i < getResultType().getRank(); ++i) {
if (!getType().isDynamicDim(i)) {
reifiedReturnShapes[0][i] = b.getIndexAttr(getType().getDimSize(i));
continue;
}
Location loc = getLoc();
Value dim = b.createOrFold<tensor::DimOp>(
loc, getSource(), b.create<arith::ConstantIndexOp>(loc, i));

AffineExpr d0, d1, d2;
bindDims(b.getContext(), d0, d1, d2);
reifiedReturnShapes[0][i] = affine::makeComposedFoldedAffineApply(
b, loc, {d0 + d1 + d2}, {dim, lp[i], hp[i]});
}
return success();
}

void PadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<FoldStaticZeroPadding, FoldSourceTensorCast, FoldTargetTensorCast,
Expand Down
6 changes: 3 additions & 3 deletions mlir/test/Dialect/Linalg/pad_fusion.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,9 @@ func.func @dynamic_pad_fusion(%arg0 : tensor<?x?xf32>, %arg1 : index, %arg2 : in
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[SOURCE:.+]] = linalg.generic
// CHECK-DAG: %[[SOURCE_D0:.+]] = tensor.dim %[[SOURCE]], %[[C0]]
// CHECK-DAG: %[[TARGET_D0:.+]] = affine.apply #[[MAP]]()[%[[ARG1]], %[[ARG3]], %[[SOURCE_D0]]]
// CHECK-DAG: %[[TARGET_D0:.+]] = affine.apply #[[MAP]]()[%[[SOURCE_D0]], %[[ARG1]], %[[ARG3]]]
// CHECK-DAG: %[[SOURCE_D1:.+]] = tensor.dim %[[SOURCE]], %[[C1]]
// CHECK-DAG: %[[TARGET_D1:.+]] = affine.apply #[[MAP]]()[%[[ARG2]], %[[ARG4]], %[[SOURCE_D1]]]
// CHECK-DAG: %[[TARGET_D1:.+]] = affine.apply #[[MAP]]()[%[[SOURCE_D1]], %[[ARG2]], %[[ARG4]]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[TARGET_D0]], %[[TARGET_D1]])
// CHECK: %[[FILL:.+]] = linalg.fill ins(%[[ARG5]]{{.*}}outs(%[[INIT]]
// CHECK-DAG: %[[SIZE_D0:.+]] = tensor.dim %[[SOURCE]], %[[C0]]
Expand Down Expand Up @@ -80,7 +80,7 @@ func.func @mixed_pad_fusion(%arg0 : tensor<?x42xf32>, %arg1 : index, %arg2 : ind
// CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index
// CHECK-DAG: %[[SOURCE:.+]] = linalg.generic
// CHECK-DAG: %[[SOURCE_D1:.+]] = tensor.dim %[[SOURCE]], %[[C1]]
// CHECK-DAG: %[[TARGET_D1:.+]] = affine.apply #[[MAP]]()[%[[ARG1]], %[[ARG2]], %[[SOURCE_D1]]]
// CHECK-DAG: %[[TARGET_D1:.+]] = affine.apply #[[MAP]]()[%[[SOURCE_D1]], %[[ARG1]], %[[ARG2]]]
// CHECK: %[[INIT:.+]] = tensor.empty(%[[TARGET_D1]])
// CHECK: %[[FILL:.+]] = linalg.fill ins(%[[ARG3]]{{.*}}outs(%[[INIT]]
// CHECK-DAG: %[[SIZE_D1:.+]] = tensor.dim %[[SOURCE]], %[[C1]]
Expand Down
4 changes: 2 additions & 2 deletions mlir/test/Dialect/Linalg/resolve-shaped-type-result-dims.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -268,9 +268,9 @@ func.func @dim_of_pad_op(%arg0 : tensor<2x?x?xf32>, %arg1 : index, %arg2 : index
// CHECK-DAG: %[[C2:.+]] = arith.constant 2 : index
// CHECK-DAG: %[[C12:.+]] = arith.constant 12 : index
// CHECK: %[[IN_DIM1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
// CHECK: %[[OUT_DIM1:.+]] = affine.apply #[[MAP0]]()[%[[ARG1]], %[[IN_DIM1]]]
// CHECK: %[[OUT_DIM1:.+]] = affine.apply #[[MAP0]]()[%[[IN_DIM1]], %[[ARG1]]]
// CHECK: %[[IN_DIM2:.+]] = tensor.dim %[[ARG0]], %[[C2]]
// CHECK: %[[OUT_DIM2:.+]] = affine.apply #[[MAP1]]()[%[[ARG2]], %[[IN_DIM2]]]
// CHECK: %[[OUT_DIM2:.+]] = affine.apply #[[MAP1]]()[%[[IN_DIM2]], %[[ARG2]]]
// CHECK: return %[[C12]], %[[OUT_DIM1]], %[[OUT_DIM2]]

// -----
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
// CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[c50:.*]] = arith.constant 50 : index
// CHECK-DAG: %[[dim0:.*]] = tensor.dim %[[t]], %[[c0]]
// CHECK-DAG: %[[size0:.*]] = affine.apply #[[$map]]()[%[[h1]], %[[dim0]]]
// CHECK-DAG: %[[size0:.*]] = affine.apply #[[$map]]()[%[[dim0]], %[[h1]]]
// CHECK-DAG: %[[size1:.*]] = affine.apply #[[$map1]]()[%[[l2]], %[[h2]]]
// CHECK: %[[alloc:.*]] = memref.alloc(%[[size0]], %[[size1]]) : memref<?x?xindex>
// CHECK: linalg.fill ins(%[[c50]] : index) outs(%[[alloc]] : memref<?x?xindex>)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ module attributes {transform.with_named_sequence} {
// CHECK-SAME: %[[t1:.*]]: tensor<?x10xindex>, %[[l2:.*]]: index, %[[h1:.*]]: index, %[[h2:.*]]: index
// CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[dim0:.*]] = tensor.dim %[[t1]], %[[c0]]
// CHECK-DAG: %[[size0:.*]] = affine.apply #[[$map]]()[%[[h1]], %[[dim0]]]
// CHECK-DAG: %[[size0:.*]] = affine.apply #[[$map]]()[%[[dim0]], %[[h1]]]
// CHECK-DAG: %[[size1:.*]] = affine.apply #[[$map1]]()[%[[l2]], %[[h2]]]
// CHECK: %[[empty:.*]] = tensor.empty(%[[size0]], %[[size1]]) : tensor<?x?xindex>
// CHECK: %[[generic:.*]] = linalg.generic
Expand Down Expand Up @@ -162,7 +162,7 @@ module attributes {transform.with_named_sequence} {
// CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[c50:.*]] = arith.constant 50 : index
// CHECK-DAG: %[[dim0:.*]] = tensor.dim %[[t1]], %[[c0]]
// CHECK-DAG: %[[size0:.*]] = affine.apply #[[$map]]()[%[[h1]], %[[dim0]]]
// CHECK-DAG: %[[size0:.*]] = affine.apply #[[$map]]()[%[[dim0]], %[[h1]]]
// CHECK-DAG: %[[size1:.*]] = affine.apply #[[$map1]]()[%[[l2]], %[[h2]]]
// CHECK: %[[empty:.*]] = tensor.empty(%[[size0]], %[[size1]]) : tensor<?x?xindex>
// CHECK: %[[filled:.*]] = linalg.fill ins(%[[c50]] : index) outs(%[[empty]] : tensor<?x?xindex>)
Expand Down Expand Up @@ -197,7 +197,7 @@ module attributes {transform.with_named_sequence} {
// CHECK-SAME: %[[t1:.*]]: tensor<?x10xindex>, %[[l2:.*]]: index, %[[h1:.*]]: index, %[[h2:.*]]: index, %[[padding:.*]]: index
// CHECK-DAG: %[[c0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[dim0:.*]] = tensor.dim %[[t1]], %[[c0]]
// CHECK-DAG: %[[size0:.*]] = affine.apply #[[$map]]()[%[[h1]], %[[dim0]]]
// CHECK-DAG: %[[size0:.*]] = affine.apply #[[$map]]()[%[[dim0]], %[[h1]]]
// CHECK-DAG: %[[size1:.*]] = affine.apply #[[$map1]]()[%[[l2]], %[[h2]]]
// CHECK: %[[empty:.*]] = tensor.empty(%[[size0]], %[[size1]]) : tensor<?x?xindex>
// CHECK: %[[filled:.*]] = linalg.fill ins(%[[padding]] : index) outs(%[[empty]] : tensor<?x?xindex>)
Expand Down
2 changes: 1 addition & 1 deletion mlir/test/Dialect/Tensor/bufferize.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -571,7 +571,7 @@ func.func @tensor.pad(%t1: tensor<?x10xindex>, %l2: index, %h1: index,
// CHECK-DAG: %[[c1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[dim0:.*]] = memref.dim %[[m1]], %[[c0]]
// CHECK-DAG: %[[dim1:.*]] = memref.dim %[[m1]], %[[c1]]
// CHECK-DAG: %[[size0:.*]] = affine.apply #[[$sum_map_1]]()[%[[h1]], %[[dim0]]]
// CHECK-DAG: %[[size0:.*]] = affine.apply #[[$sum_map_1]]()[%[[dim0]], %[[h1]]]
// CHECK-DAG: %[[size1:.*]] = affine.apply #[[$sum_map_2]]()[%[[l2]], %[[h2]]]
// CHECK: %[[alloc:.*]] = memref.alloc(%[[size0]], %[[size1]]) {{.*}} : memref<?x?xindex>
// CHECK: %[[alloc_t:.*]] = bufferization.to_tensor %[[alloc]]
Expand Down
17 changes: 17 additions & 0 deletions mlir/test/Dialect/Tensor/value-bounds-op-interface-impl.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -213,3 +213,20 @@ func.func @dynamic_dims_are_maybe_equal_2(%t: tensor<?x?xf32>) {
"test.compare"(%dim0, %dim1) : (index, index) -> ()
return
}

// -----

// CHECK-LABEL: func.func @pad_reification
func.func @pad_reification(%cst : f32, %idx : index, %t: tensor<64x?x64xf32>) {
%pad_amt = affine.apply affine_map<(d0) -> (-d0 + 256)>(%idx)
%es = tensor.extract_slice %t[0, 0, 0] [1, %idx, 64] [1, 1, 1] : tensor<64x?x64xf32> to tensor<1x?x64xf32>

%padded = tensor.pad %es low[0, 0, 0] high[0, %pad_amt, 0] {
^bb0(%a: index, %b: index, %c: index):
tensor.yield %cst : f32
} : tensor<1x?x64xf32> to tensor<1x?x64xf32>

// CHECK: arith.constant 256 : index
%1 = "test.reify_bound"(%padded) {dim = 1, constant} : (tensor<1x?x64xf32>) -> (index)
return
}
Loading