Skip to content

adds checks for used device in metrics tests. #3335 #3353

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 25, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions tests/ignite/metrics/gan/test_inception_score.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ def test_inception_score(available_device):

p_yx = torch.rand(20, 3, 299, 299)
m = InceptionScore(device=available_device)
assert m._device == torch.device(available_device)
m.update(p_yx)
assert isinstance(m.compute(), float)

Expand Down
3 changes: 3 additions & 0 deletions tests/ignite/metrics/test_accuracy.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ def test_binary_wrong_inputs():
@pytest.mark.parametrize("n_times", range(3))
def test_binary_input(n_times, available_device, test_data_binary):
acc = Accuracy(device=available_device)
assert acc._device == torch.device(available_device)

y_pred, y, batch_size = test_data_binary
acc.reset()
Expand Down Expand Up @@ -104,6 +105,7 @@ def test_multiclass_wrong_inputs():
@pytest.mark.parametrize("n_times", range(3))
def test_multiclass_input(n_times, available_device, test_data_multiclass):
acc = Accuracy(device=available_device)
assert acc._device == torch.device(available_device)

y_pred, y, batch_size = test_data_multiclass
acc.reset()
Expand Down Expand Up @@ -155,6 +157,7 @@ def test_multilabel_wrong_inputs():
@pytest.mark.parametrize("n_times", range(3))
def test_multilabel_input(n_times, available_device, test_data_multilabel):
acc = Accuracy(is_multilabel=True, device=available_device)
assert acc._device == torch.device(available_device)

y_pred, y, batch_size = test_data_multilabel
if batch_size > 1:
Expand Down
2 changes: 2 additions & 0 deletions tests/ignite/metrics/test_average_precision.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,7 @@ def test_data_binary_and_multilabel(request):
def test_binary_and_multilabel_inputs(n_times, available_device, test_data_binary_and_multilabel):
y_pred, y, batch_size = test_data_binary_and_multilabel
ap = AveragePrecision(device=available_device)
assert ap._device == torch.device(available_device)
ap.reset()
if batch_size > 1:
n_iters = y.shape[0] // batch_size + 1
Expand Down Expand Up @@ -129,6 +130,7 @@ def update_fn(engine, batch):
engine = Engine(update_fn)

ap_metric = AveragePrecision(device=available_device)
assert ap_metric._device == torch.device(available_device)
ap_metric.attach(engine, "ap")

np_y = y.numpy()
Expand Down
2 changes: 2 additions & 0 deletions tests/ignite/metrics/test_cosine_similarity.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@ def test_compute(n_times, test_case: Tuple[Tensor, Tensor, float, int], availabl
y_pred, y, eps, batch_size = test_case

cos = CosineSimilarity(eps=eps, device=available_device)
assert cos._device == torch.device(available_device)

cos.reset()
if batch_size > 1:
Expand All @@ -69,6 +70,7 @@ def test_compute(n_times, test_case: Tuple[Tensor, Tensor, float, int], availabl

def test_accumulator_detached(available_device):
cos = CosineSimilarity(device=available_device)
assert cos._device == torch.device(available_device)

y_pred = torch.tensor([[2.0, 3.0], [-2.0, 1.0]], dtype=torch.float)
y = torch.ones(2, 2, dtype=torch.float)
Expand Down
3 changes: 3 additions & 0 deletions tests/ignite/metrics/test_precision.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,7 @@ def ignite_average_to_scikit_average(average, data_type: str):
@pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"])
def test_binary_input(n_times, available_device, average, test_data_binary):
pr = Precision(average=average, device=available_device)
assert pr._device == torch.device(available_device)
assert pr._updated is False
y_pred, y, batch_size = test_data_binary

Expand Down Expand Up @@ -193,6 +194,7 @@ def test_multiclass_wrong_inputs():
@pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"])
def test_multiclass_input(n_times, available_device, average, test_data_multiclass):
pr = Precision(average=average, device=available_device)
assert pr._device == torch.device(available_device)
assert pr._updated is False

y_pred, y, batch_size = test_data_multiclass
Expand Down Expand Up @@ -260,6 +262,7 @@ def to_numpy_multilabel(y):
@pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted", "samples"])
def test_multilabel_input(n_times, available_device, average, test_data_multilabel):
pr = Precision(average=average, is_multilabel=True, device=available_device)
assert pr._device == torch.device(available_device)
assert pr._updated is False

y_pred, y, batch_size = test_data_multilabel
Expand Down
1 change: 1 addition & 0 deletions tests/ignite/metrics/test_psnr.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ def test_psnr(test_data, available_device):
data_range = (y.max() - y.min()).cpu().item()

psnr = PSNR(data_range=data_range, device=available_device)
assert psnr._device == torch.device(available_device)
psnr.update(test_data)
psnr_compute = psnr.compute()

Expand Down
3 changes: 3 additions & 0 deletions tests/ignite/metrics/test_recall.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,7 @@ def ignite_average_to_scikit_average(average, data_type: str):
@pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"])
def test_binary_input(n_times, available_device, average, test_data_binary):
re = Recall(average=average, device=available_device)
assert re._device == torch.device(available_device)
assert re._updated is False

y_pred, y, batch_size = test_data_binary
Expand Down Expand Up @@ -195,6 +196,7 @@ def test_multiclass_wrong_inputs():
@pytest.mark.parametrize("average", [None, False, "macro", "micro", "weighted"])
def test_multiclass_input(n_times, available_device, average, test_data_multiclass):
re = Recall(average=average, device=available_device)
assert re._device == torch.device(available_device)
assert re._updated is False

y_pred, y, batch_size = test_data_multiclass
Expand Down Expand Up @@ -263,6 +265,7 @@ def to_numpy_multilabel(y):
def test_multilabel_input(n_times, available_device, average, test_data_multilabel):

re = Recall(average=average, is_multilabel=True, device=available_device)
assert re._device == torch.device(available_device)
assert re._updated is False

y_pred, y, batch_size = test_data_multilabel
Expand Down
2 changes: 2 additions & 0 deletions tests/ignite/metrics/test_roc_auc.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,6 +87,7 @@ def test_data_binary_and_multilabel(request):
def test_binary_and_multilabel_inputs(n_times, available_device, test_data_binary_and_multilabel):
y_pred, y, batch_size = test_data_binary_and_multilabel
roc_auc = ROC_AUC(device=available_device)
assert roc_auc._device == torch.device(available_device)
roc_auc.reset()
if batch_size > 1:
n_iters = y.shape[0] // batch_size + 1
Expand Down Expand Up @@ -147,6 +148,7 @@ def update_fn(engine, batch):
engine = Engine(update_fn)

roc_auc_metric = ROC_AUC(device=available_device)
assert roc_auc_metric._device == torch.device(available_device)
roc_auc_metric.attach(engine, "roc_auc")

np_y = y.numpy()
Expand Down
3 changes: 2 additions & 1 deletion tests/ignite/metrics/test_ssim.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ def test_ssim_variable_batchsize(available_device):
sigma = 1.5
data_range = 1.0
ssim = SSIM(data_range=data_range, sigma=sigma, device=available_device)

assert ssim._device == torch.device(available_device)
y_preds = [
torch.rand(12, 3, 28, 28, device=available_device),
torch.rand(12, 3, 28, 28, device=available_device),
Expand Down Expand Up @@ -229,6 +229,7 @@ def test_ssim_uint8(available_device, shape, kernel_size, gaussian, use_sample_c
sigma = 1.5
data_range = 255
ssim = SSIM(data_range=data_range, sigma=sigma, device=available_device)
assert ssim._device == torch.device(available_device)
ssim.update((y_pred, y))
ignite_ssim = ssim.compute()

Expand Down
Loading